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Abstract

We examine a variety of polynomial-chaos-motivated approximations to a stochastic form of a steady state groundwa-
ter flow model. We consider approaches for truncating the infinite dimensional problem and producing decoupled systems.
We discuss conditions under which such decoupling is possible and show that to generalize the known decoupling by
numerical cubature, it would be necessary to find new multivariate cubature rules. Finally, we use the acceleration of
Monte Carlo to compare the quality of polynomial models obtained for all approaches and find that in general the meth-
ods considered are more efficient than Monte Carlo for the relatively small domains considered in this work. A curse of
dimensionality in the series expansion of the log-normal stochastic random field used to represent hydraulic conductivity
provides a significant impediment to efficient approximations for large domains for all methods considered in this work,
other than the Monte Carlo method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Analysis of groundwater flow in naturally occurring water-saturated porous media is influenced by signif-
icant variations in medium properties and source and boundary conditions over relevant length scales. When
this variability cannot be characterized deterministically using available means, stochastic analysis of single-
fluid-phase (hereafter simply single-phase) flow through porous media is commonly performed (cf. [28,82]).
The objective of such an analysis is to characterize the uncertainty of quantities such as the hydraulic head
or velocity as a function of uncertain parameters and conditions in the model. This uncertainty is typically
described by low-order moments of the quantities of interest.

While the stochastic nature of subsurface systems has been recognized for more than a quarter of a century
[69], the quest continues for development of accurate and efficient methods of stochastic analysis that effec-
tively reduce such analysis to routine practice. An ideal, but perhaps unattainable, solution to the problem
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would provide expressions functionally incorporating stochastic parameters, associated with the conductivity
field and boundary conditions, from which desired statistical properties could be computed. This goal has not
been attained, except in special cases, and current practice often aims for somewhat less, such as approximate
values of the first few statistical moments. Calculation of such statistics involves evaluation of certain integrals
in probability space, but hydrological problems potentially involve many degrees of freedom, and the density
functions are often unknown.

Naı̈ve Monte Carlo (MC) methods (e.g. [40]) were the first to be used and are still often chosen, being easily
implemented adaptively and having the advantage of generality but converging sublinearly at a rate indepen-
dent of the stochastic dimension. Certain pitfalls must be avoided when using MC methods: for example, the
pseudorandom variates used for simulation can fail in important ways [53]. These methods are not easily con-
ditionalized [61], and their slow convergence has led to interest in acceleration techniques [13,30]. Transforma-
tion of the underlying probability space using importance sampling was suggested in [49], using a spatially
constant random conductivity field with one-dimensional flow, but to the best of our knowledge it has not
been considered for nontrivial stochastic flow problems.

One class of standard acceleration techniques involves preferential sampling of the underlying probability
space, as in the Latin hypercube method [70]; one might consider the direct attempt to calculate statistical
moments from simulations by a numerical cubature as a limiting case of such methods, which has led to inter-
est in sparse cubature schemes, as in Xiu and Hesthaven [78], for example. Chorin [13] has suggested a var-
iance-reduction use of Hermite series to accelerate MC. Other alternatives include spectral methods [46], as
well as perturbation series methods and moment equations [66,82,83].

Polynomial chaos (PC) methods [25] for approximating solutions of stochastic equations have received
recent attention in the water resources [22,23], engineering [68], and mathematics literature [5]. These methods
approximate both stochastic model inputs and output using series expansions to replace stochastic equations
by deterministic systems that are then finitely truncated and solved discretely. Variations of the method have
been used to study diffusion [3,45] and fluid dynamics [47,51]. There is also a growing literature on applica-
tions of PC methods to steady state flow in porous media and related elliptic equations [4,5,22,41,64,77,79,80].

As opposed to MC methods, which require many domain-sized solves, PC methods typically produce large
coupled systems. In special cases, it is possible to decouple these large systems into domain-sized problems,
restoring one of the benefits of the MC approach. One technique accomplishing this decoupling is the so-called
method of double orthogonal variables (DOV), solving a generalized eigenvalue problem to decompose the
system. Another technique decomposes an approximation to the system by computing certain expectations
numerically. As opposed to MC, none of these methods are adaptive: one decides in advance the approxima-
tion to be used.

Applying the PC approach becomes problematic as the number of independent modes of variability of the
problem increases: if many variables are required to model the stochastic inputs, the resulting systems can
become quite large. The suggestion of Roy and Grilli [66], that moment methods might sometimes be more
practical in such cases, led to a multivariate moment method [83]; similar to MC, this method requires only
domain-sized solves and can be run until a desired tolerance is reached, at the cost of storing some prior results
for reuse.

It is at present unclear which statistical approximation methods, if any, are superior. Some methods, for
example, easily produce approximate solutions to the stochastic equation that are polynomial in the random
input variables. There are also questions of applicability in complex environments and convenience of use.
Method-specific limitations arise, such as the restriction to low-variability systems required by moment meth-
ods [16,67]. A detailed comparison of statistical approximation methods is currently lacking from the litera-
ture, and it is not clear if and when such approaches are preferable computationally to MC methods.

The overall goal of this work is to investigate and compare methods to approximate low-order stochastic
moments of the single-phase groundwater flow equation. The specific objectives of this work are: (1) to for-
mulate a PC approximation of the groundwater flow equation; (2) to summarize a set of methods that result in
decoupled approximations; (3) to establish conditions under which such decoupling is possible; (4) to formu-
late a MC acceleration and error analysis approach based upon the derived stochastic polynomial models, (5)
to compare the approximation methods for computational efficiency; and (6) to assess the limitations and
areas of potentially fruitful future study for these methods.
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2. Background

As described in Ghanem and Spanos [25], PC methods involve expanding random functions of independent
variates in orthogonal polynomials, based on work of Wiener [76] and Cameron and Martin [11], truncating
the series and projecting to replace the stochastic systems by a deterministic system. Solution of the determin-
istic systems then produces approximate polynomial solutions to the original stochastic equation. Using prop-
erties of the orthogonal polynomials, the integrals needed in moment calculations can be obtained directly.
Related ideas have been used to construct polynomial solutions to study climate [74], to model dose and expo-
sure [36], and to simulate watersheds [34]. PC methods typically produce large coupled systems, which can be
tedious to derive and can require special solution techniques.

PC methods seem attractive because the underlying polynomial expansions can converge quickly [5,21].
These methods can also be used to produce easily conditionalized polynomial models [23]. But when many
independent random variables are required to model the stochastic inputs, it may be necessary to ignore some
random variates in order to model the others to sufficiently high degree, and the effects of this trade-off are not
immediately clear. The advantages might therefore be illusory when the number of degrees of freedom is large.
Pellissetti and Ghanem [62] noted that for stochastic systems satisfying a certain linearity condition, the PC
approach involves matrices with a sparse block structure and suggested avoiding full matrix assembly. Such
systems are obtainable for the groundwater flow equation with lognormal conductivity by rewriting the equa-
tion appropriately. For some truncations of such systems, the DOV method, attributed in Keese [38] to Wer-
der et al. [75], will reduce the problem to a number of uncoupled domain-sized problems. This decoupling is
accomplished by solving a generalized eigenvalue problem. Using this decoupling, Frauenfelder et al. [21]
studied an elliptic equation, with conductivity linear in each of the underlying random variates. The DOV
method has also been applied to a linear transport model [43].

Relations between numerical quadrature and pseudospectral methods being well known [9,73], several
authors naturally investigated collocation techniques related to PC systems as an alternative to projection
methods [40,56,57,68]. Numerical cubature has been applied to simplify computation of expectations in PC
expansions [56] and as a method for estimating PC coefficients without considering the coupled systems that
result from projection [1,36,74]. Babuska et al. [6] studied the groundwater flow equation with a multilinear
conductivity, noted that the eigenvalues obtained by DOV are multivariate Gauss cubature knots, remarked
that the DOV decoupling strategy works in the multilinear case, and noted the equivalence of DOV decou-
pling and numerical cubature in the stochastic dimensions (also called collocation) in the case of a multilinear
source and homogeneous Dirichlet boundary. Collocation based on knots associated with sparse grid cuba-
tures has also been studied [38,78]. It has similarly been remarked that PC systems can be decoupled by certain
cubature formulae: for example, Sandu et al. [68] have remarked that a cubature formula respecting the
orthogonality of the polynomials will decouple PC systems associated with certain mechanical problems.

PC methods have been applied to flow and transport problems [22,23]. Babuska et al. [5] provided a the-
oretical discussion of the relative merits of PC expansion and MC methods, concentrating on cases for which
DOV decoupling is available when the underlying variates are independent and not examining more general
truncations. Lognormal conductivities seldom appear in PC investigations of the elliptic steady groundwater
flow equation, but Babuska et al. [6] established that lognormal conductivities in the flow equation leads to
well-posed problems. Because the coupled systems are large, the question raised by Roy and Grilli [66]
remains: is the method really useful for groundwater flow equations? Related nonspectral moment-method
techniques [50] have been examined as an alternative.

For hydrological investigations, the fields of interest are likely to involve more modes of variation than can
be modeled in full detail, and the effects of neglecting some variability are therefore important. In this context,
the relative accuracy of PC and related methods, and the effects of domain size and field variability on the
accuracy of the methods, deserves further investigation.

3. Polynomial chaos and projection

The standard PC approach to approximate the solution of stochastic differential equations involves: expan-
sion of the uncertain input parameters and unknown dependent variables in series of orthogonal polynomials,
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computation of certain expectations to produce a system of deterministic equations, and solution of the deter-
ministic system.

Consider the stochastic steady state porous medium flow equation
r � KrH ¼ �h ð1Þ

with first- and second-kind boundary conditions given by
H joD
¼ H D; ð2Þ

onH joN
¼ �K�1QN; ð3Þ
where oD and oN, respectively, refer to complementary portions of the Dirichlet and Neumann boundary. The
conductivity K � Kðx;xÞ, source h � hðx;xÞ, head H � Hðx;xÞ, and boundary values H Dðx;xÞ and
QNðx;xÞ=Kðx;xÞ here are all random fields, functions of spatial position x and of a certain finite set of ran-
dom variates x that have known joint probability density q � qðxÞ. Throughout this article, x always denotes
one of the random variates in x.

The head, source, and boundary terms are expanded as infinite series
Hðx;xÞ ¼ Ra H aðxÞhaðxÞ; ð4Þ
hðx;xÞ ¼ RahaðxÞhaðxÞ; ð5Þ
H joD

¼ RaH D
a ðxÞhaðxÞ; ð6Þ

onH joN
¼ �RaK�1ðx;xÞQN

a ðxÞhaðxÞ; ð7Þ
involving a family of multivariate polynomials haðxÞ orthonormal with respect to q, as well as purely spatial
functions H a, ha, H D

a , and QN
a . To avoid negative diffusion coefficients, that might result from truncation, K is

not similarly expanded (cf. [4,64]).
We substitute the expansions given by Eqs. (4)–(7) into Eqs. (1)–(3), multiply each of the resulting equa-

tions by various hb, and compute expectations relative to q. Thus from Eq. (1), for example, we obtain
E½hbr � KrH � ¼ �E½hbh�; ð8Þ
Rar � GbarH a ¼ �hb; ð9Þ
where
Gba � E½Khbha� ¼ Gab: ð10Þ
Similarly, Eqs. (2) and (3) produce
HbjoD
¼ H D

b ; ð11Þ
onHbjoN

¼ �RaG�1
ba QN

a ; ð12Þ
where
G�1
ba � E½K�1hbha�: ð13Þ
Similarly, rewriting Eq. (1) in the form
r lnðKÞ � rH þr2H ¼ �h=K ð14Þ

multiplying by h/ and computing expectations yields
RarE½lnðKÞhah/� � rH a þr2H/ ¼ �RahaG�1
a/ : ð15Þ
To proceed further, it is necessary to specify the field K as a function of the variables x and their joint density
q; specify the polynomials ha; and compute explicitly certain integrals such as Gba. It is further necessary to
choose a finite truncation of the infinite series in Eq. (9) or (15) and (12).
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3.1. Further specification

A natural interpretation, of the common view that the hydraulic conductivity Kðx;xÞ is lognormal, is that
the log-conductivity j � lnðKÞ is a Gaussian field. Whether conductivities can reasonably be assumed lognor-
mal is a regular topic of investigation: the distribution in a sandstone formation, for example, varied with the
part sampled [18], while a soil investigation concluded the lognormal distribution fit the data better than a
gamma distribution [59]. Although the validity of using Gaussian fields to describe log-conductivities remains
open to question [27], we adopt the hypothesis here because it is convenient for calculation and has commonly
been assumed [82]. We thus assume a finite expansion for the log-conductivity of the form
jðx;xÞ � jðxÞ þ RxjxðxÞx ð16Þ

involving the mean field jðxÞ and certain auxiliary fields jxðxÞ indexed by the random variates x in the set x.
Expansions, or approximate expansions, of the form (16) can be obtained in various ways, but there is some
advantage to using a finitely truncated Karhunen–Loève expansion (KLE). The KLE is determined by the
mean jðxÞ and covariance function cjðx; x0Þ of j. The KLE terms and variates correspond to certain eigen-
pairs of an integral operator, whose eigenvalues can be arranged in decreasing order kx1

P kx2
P kx3

� � �; it
is natural to say that the variate x is ‘‘more important’’ than the variate x0 if the corresponding eigenvalues
satisfy kx > k0x. Series obtained by KLE have optimal mean-square convergence in the following sense: no
sum of n terms from any other series expansion of the random field can produce a more accurate approxima-
tion of j than the sum of the first n KLE terms [25]. This optimal convergence property explains the common
use of KLE in PC analyses, because it minimizes the number of variables required for a given accuracy and
hence limits system size. See Appendix A for details and references.

The assumption that j is a Gaussian field leads to uncorrelated (hence independent) standard normal vari-
ates x � Nð0; 1Þ. The normalized univariate probabilists’ Hermite polynomials (univariate h-polynomials) are
defined by the three-term relation
hnþ1ðxÞ ¼ ½xhnðxÞ �
ffiffiffi
n
p

hn�1ðxÞ�=
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

ð17Þ

with h0ðxÞ � 1 and h1ðxÞ � x. These h-polynomials are orthonormal with respect to the standard univariate
normal density
qðxÞ � expð�x2=2Þ=
ffiffiffiffiffiffi
2p
p

: ð18Þ

Since x is assumed finite, the product density
qðxÞ � Px qðxÞ ð19Þ
makes sense, and an orthonormal family of multivariate polynomials for qðxÞ is obtained by taking products
of the univariate h-polynomials.

The remainder of this subsection involves some largely notational issues. To help fix ideas, the reader may
consult Appendix B, which contains some sample calculations. It is convenient to forget the random character
of the variates x, when they are used for indexing purposes, regarding them merely as formal variables appear-
ing in certain polynomials.

There is a natural indexing of the multivariate h-polynomials: each monomial a, in the variates x, deter-
mines a vector of integer exponents haxix2x defined by
a � Px xax ð20Þ

and we define the corresponding multivariate h-polynomial by
haðxÞ � Px haxðxÞ ð21Þ

so a is the pure monomial part of the unique highest degree term in ha. The natural indexing is a notational
convenience: for coding purposes, it is useful to maintain a table of the various exponent vectors haxix2x.

For the univariate h-polynomials, the triple product expectations are
X a
bc � E½haðxÞhbðxÞhcðxÞ� ð22Þ



2180 C.P. Rupert, C.T. Miller / Journal of Computational Physics 226 (2007) 2175–2205
and we define infinite matrices X 0;X 1;X 2; . . . by
X a � ðX a
bcÞ06b<1;06c<1 ð23Þ
Appendix C contains explicit expressions for the matrix entries.
Similarly for the multivariate h-polynomials, the triple product expectations
X a
bc � E½hahbhc� ¼ PxX ax

bxcx
ð24Þ
define, for each monomial a in the variates x, an infinite (but row and column finite) matrix
X a � ðX a
bcÞ ð25Þ
with entries indexed by the various pairs of monomials in those variates. The matrices X a describe the mul-
tiplication of the h-polynomials:
hbhc ¼ Ra X a
bcha ð26Þ
Since each variate x is a monomial, the definition (24) makes sense for a � x, and the resulting matrices X x

provide multivariate analogs of the univariate Jacobi matrix encoding the three-term relation, that in the mul-
tivariate case becomes
xha ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax þ 1

p
hax þ

ffiffiffiffiffi
ax
p

ha=x ð27Þ
In Eq. (27), ax and a=x, respectively, denote the results of multiplying or dividing the monomial a by the var-
iate x, with the convention that the second term is dropped if the variate x does not actually occur in a.

Because the matrix entries X a
bc can be computed exactly, it is possible to obtain exact expressions for the

entries of the matrices G and G�1; see Appendix C. The quantities X a
bc are also required for the computation

of higher order statistics, although the mean and covariance function can be expressed easily:
HðxÞ ¼ H 1ðxÞ; ð28Þ
cHðx; x0Þ ¼ Ra6¼1H aðxÞH aðx0Þ: ð29Þ
Here, a 6¼ 1 indicates that the summation extends over multivariate polynomials of positive degree.

3.2. Truncation

For numerical purposes, the infinite series in Eqs. (9) or (15) and (12) must be truncated. We write b � a to
indicate that the monomial b divides the monomial a or (in other words) bx 6 ax for each variate x. By a
truncation set s of the system, we mean a finite set of monomials, containing the constant unit monomial,
and with the following property: whenever a belongs to s and b � a, then b also belongs to s. Throughout
this article, s always denotes a truncation set.

The set of variates x \ s actually appearing in s may be a proper subset of x. So we further impose the
following condition: whenever a variate x belongs to s, so does every variate ‘‘more important’’ than x, in
the sense of Section 3.1.

We note, in particular, two special classes of a truncation set. By a total degree truncation set s ¼ sðe; dÞ, we
mean a truncation set obtained by choosing e of the most important variates and then collecting the mono-
mials a in those variates with total degree jaj � Rxax 6 d. Such a truncation set has size
Nðe; dÞ �
eþ d

d

� �
ð30Þ
and is related to a standard orthogonal decomposition of a Gaussian Hilbert space [17,37]. By a rectangular
truncation set s ¼ sðlÞ, we mean a truncation set consisting of all a � l for some fixed monomial l ¼ Pxxmx .
For such a truncation set, we also use the convenient notation of Frauenfelder et al. [21], which describes a
rectangular truncation sðlÞ in terms of the degree-vector of l
sðlÞ ¼ ½mx1
;mx2

; . . . ;mxe � ð31Þ

with indices ordered by decreasing importance of the variates; the size is Pxð1þ mxÞ.
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Each truncation set s naturally induces truncations of matrices and summations, by restricting the indices
to s. We indicate a truncated summation by Ra2s/a; in the case of a rectangular truncation set, s � sðlÞ, we
write Ra�l/a. Given a random function Y ðx;xÞ with PC expansion
Table
Appro

Doma

1� 1

2� 2

3� 3

4� 4
Y ðx;xÞ ¼ RaY aðxÞhaðxÞ ð32Þ

we define the truncated summation corresponding to s by
�Y sðx;xÞ ¼ Ra2sY aðxÞhaðxÞ: ð33Þ

In particular, this has the effect of neglecting the variates not in s. We similarly indicate by �X c the finite matrix
with entries X c

ab with indices a and b (but not c) restricted to lie in s, which will always be clear from the con-
text and hence is not reflected in the notation.

3.3. Number of variates

Solving the truncated system, consisting of Eqs. (9) or (15) and (11)–(13), produces a polynomial model
from the truncated form of Eq. (4), and the statistics may be obtained as described in Section 3.1.

The truncation set, however, must be chosen so the truncated system is not too large: the infinite series in
Eq. (4) is expected to contain terms of arbitrarily high degree, which are suppressed by truncation, and in gen-
eral x \ s will be a proper subset of x and some of the true variability of K will be lost.

If the conductivity K has a covariance functions decaying with separation, the field values become increas-
ingly decoupled at distance; the field therefore exhibits more degrees of freedom on larger domains. Arranging
the eigenvalues from a KLE in decreasing order kx1

P kx2
P kx3

P � � �, one may ask how quickly kxn decays
as a function of n. Frauenfelder et al. [21] obtained estimates for the decay of eigenvalues, showing the decay
rate decreases with increasing spatial dimension, and that the decay is faster for analytic covariance functions
than for the nonanalytic ones. Some intuition is provided by the one-dimensional case: Huang et al. [35] have
shown that the eigenfunctions approach sinusoids as the domain size increases and the expansion approaches
a spectral representation; thus, dropping eigenpairs with small eigenvalues from the KLE corresponds to a
primitive upscaling of the conductivity field, by ignoring the higher frequency modes of variation of j.

For our simulations, we adopted a Gaussian covariance that leads, on a two-dimensional rectangular
domain, to Kronecker product matrices and to rapid eigenpair decay; the required expansion for the field
j was thus obtained as a sum of products of the discretized one-dimensional eigenfunctions for the separated
components of the covariance function. Table 1 illustrates that many eigenpairs may be required to obtain a
1
ximation of target covariance

in size Number of eigenpairs kek2=jXj
5 1:389� 10�2

10 3:809� 10�4

15 2:208� 10�5

20 1:268� 10�6

5 8:090� 10�2

10 1:885� 10�2

15 4:415� 10�3

20 6:345� 10�4

5 1:267� 10�1

10 6:366� 10�2

15 1:911� 10�2

20 9:068� 10�3

5 1:315� 10�1

10 9:237� 10�2

15 4:518� 10�2

20 2:920� 10�2
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random field that approximates the target field well by KLE. This table shows the L2 error of the approximate
covariance function on a unit square obtained from a truncated KLE as a function of domain size in corre-
lation lengths and number of retained variates. The data were obtained by computing the eigenfunctions Wx of
an isotropic Gaussian covariance
cWðx; x0Þ � r2 expð�kx� x0k2
=.2Þ ð34Þ
with correlation length . on a unit square X and computing
e � kcWðx; x0Þ � ~cWðx; x0ÞkX ð35Þ

where x0 is a corner point of X, the norm is defined by spatial integration
kUðxÞk2
X �

Z
X

U2ðxÞ dx ð36Þ
and
~cWðx; x0Þ ¼ Rn
j¼1WxjðxÞWxjðx0Þ ð37Þ
is an estimate for cW, based on Eq. (A.4) but using only the eigenpairs corresponding to the largest eigenvalues.
In general, the total number of variates required is expected to exceed the number required to reproduce j

accurately, since not all variability in the source term and boundary conditions will arise from modes of fluc-
tuation of the log-conductivity field.
4. Decoupling the polynomial chaos system

The size of the coupled systems, produced by projection, grows quickly with the number of normal variates
x and the degrees of the retained h-polynomials ha, which limits the feasibility of the PC methods. In certain
cases, however, the large system given by Eq. (15) can be decoupled: that is, it is possible to solve the large
system by solving a number of independent domain-sized problems. Using Eq. (16) to expand lnðKÞ, together
with the definition (24) produces
rj � rH/ þ RarðRxX x
a/jxÞ � rH a þr2H/ ¼ �RahaG�1

a/ : ð38Þ
For each a and /, the summation RxX x
a/jx contains at most one nonzero term. After truncating the system in

Eq. (38), it is natural to attempt to decouple the system by simultaneous diagonalization of the truncated
matrices �X x. As shown in Appendix D, such a simultaneous diagonalization is possible only for rectangular
truncation sets s ¼ sðlÞ. In this case, the diagonalizing matrix U s has entries
U s
af � haðfÞCf; ð39Þ
where the f are the knots, for the cubature given by the tensor-product of the corresponding univariate Her-
mite–Gauss (HG) quadratures, while the squares of the Cf are the corresponding weights W f. Further, the
eigenvalue of X x, corresponding to column f of U s, is simply the x-component zx of the tensor-product cuba-
ture knot f. Note that retaining only the sðlÞ terms in the PC series for a random function Y and setting each
x ¼ zx yields
�Y sðx; fÞ ¼ C�1
f Ra�lY aðxÞU s

af: ð40Þ
In the sections that follow, we discuss two related decoupling strategies for rectangular truncation sets: the
method of DOV and the collocation by cubature.

4.1. Double orthogonal variables

With a rectangular truncation set s ¼ sðlÞ of the variables, the matrices �X x are simultaneously diagonalized
by U s:
�X x
a/U s

/f ¼ U s
afzx: ð41Þ
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We write
Ĥ f � R/�lH/U s
/f � Cf

�H s; ð42Þ
and denote by �jsðx; fÞ the result of setting x ¼ zx for each x in s and zeroing the remaining variates in the
expansion of j. Applying the matrix U s to Eq. (38) yields
rj � rĤ f þ Rx2sRa�lR/�l
�X x

a/U s
/frjx � rH a þr2R/�lH/U s

/f ¼ �Ra�lR/�lhaG�1
a/ U s

/f: ð43Þ
Then
r�jsðx; fÞ � rĤ f þr2Ĥ f ¼ �Ra�lR/�lhaG�1
a/ U s

/f; ð44Þ
r � exp½�jsðx; fÞ�rĤ f ¼ � exp½�jsðx; fÞ�Ra�lR/l haG�1

a/ U s
/f; ð45Þ

r � exp½�jsðx; fÞ�r �H sðx; fÞ ¼ � exp½�jsðx; fÞ� C�1
f Ra�lR/�lhaG�1

a/ U s
/f: ð46Þ
Boundary conditions are handled similarly, leading to
�H sðx; fÞjoD
¼ C�1

f R/�lHD
/ U s

/f ¼ �H sDðx; fÞ; ð47Þ
on

�H sðx; fÞjoN
¼ �C�1

f Ra�lR/�lQN
a G�1

a/ U s
/f: ð48Þ
This leads to the following polynomial model:
Hðx;xÞ 	 RfR/�lĤ f U s
/f h/ðxÞ ¼ Rf

�H sðx; fÞ pfðxÞ; ð49Þ
where
pf � R/�lh/ðfÞh/ðxÞW f ð50Þ
so that the DOV decoupling corresponds to multivariate polynomial interpolation back from the solutions
�H sðx; fÞ of certain auxiliary problems indexed by the multivariate HG knots f.

In special cases, the DOV decoupling corresponds to interpolation from certain natural problems: one sim-
ply truncates the series for the boundary conditions and evaluates the truncated series at the knots f, then per-
forms the interpolation corresponding to the HG-cubature. This holds, in particular, in the multilinear cases
isolated by Babuska et al. [6]. In the general case, the auxiliary problems, on which the interpolation is based,
seem less natural. The method of DOV has limited applicability: as shown in Appendix D, the matrices �X x

commute only for rectangular truncation sets; even in this case, the matrix U s will not diagonalize other matri-
ces �X a.

4.2. Approximate collocation

Since the double orthogonal variable decoupling reflects a polynomial interpolation based on tensor-prod-
uct cubature knots, it is reasonable to consider approximating the various integrals, involved in the stochastic
projections, by the corresponding cubature formulae. Unlike the truncated matrices �X c, the approximations
~X c computed by the cubature formula are all diagonalized by the matrix U s, so all expressions simplify further.

With a rectangular truncation set s ¼ sðlÞ of the variables, Eq. (9) becomes
Ra�lr � Ga/rH a ¼ �h/: ð51Þ

One obtains by the corresponding Gaussian cubature
Ga/ 	 ~Ga/ � Rf exp½�jsðx; fÞ�haðfÞh/ðfÞW f ¼ Rf exp½�jsðx; fÞ�U s
afU

s
/f ð52Þ
and hence
Rfr � exp½�jsðx; fÞ�U s
/frRa�lH aU s

af 	 �h/; ð53Þ
R0fR/�lU s

/fU
s
/f0r � exp½�jsðx; f0Þ�rĤ f0 	 �R/�lh/U s

/f; ð54Þ
r � exp½�jsðx; fÞ�rĤ f 	 �ĥf; ð55Þ
r � exp½�jsðx; fÞ�r �H sðx; fÞ 	 ��hsðx; fÞ: ð56Þ
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Here Ĥ is defined by Eq. (42); Eq. (56) results from a division by Cc; and we continue to use the definition (40).
The Dirichlet boundary condition in Eqs. (47) and (48) is unaffected, while the Neumann condition becomes
on
�H sðx; fÞjoN

¼ exp½��jsðx; fÞ��QsNðx; fÞ: ð57Þ
The interpolation scheme (49) remains in effect. For these equations, there seems to be no obvious reason to
prefer the truncated expansions �hsðx; fÞ, �H sDðx; fÞ and �QsNðx; fÞ to the exact evaluations hðx; fÞ, HDðx; fÞ and
QNðx; fÞ, use of which may avoid a somewhat tedious expansion.

Thus, in the collocation decoupling, as opposed to the DOV decoupling, the log-conductivity need not be
multilinear. Moreover, the problems on which the polynomial interpolation is based are simpler in the case of
the collocation decoupling. In fact, given a stochastic equation for an unknown Z � ZðxÞ involving known
functions Y 1ðxÞ; . . . ; Y nðxÞ of independent normal variates, rectangular truncation of the PC expansion for
Z, with computation of the projections by tensor-product HG cubature, will produce a system neatly decou-
pled by the matrix U s, and the functions Y will be replaced by their values (or the values of their truncated
expansions) at the knots f.

The calculations in this section will not directly generalize to nonrectangular truncation sets. In Appendix
D, it is shown that there is no exact analog for HG cubature for the nonrectangular truncation sets s. A cuba-
ture rule, having the same number of knots as monomials in s, either fails to respect the orthonormality of the
h-polynomials corresponding to monomials in s or miscalculates entries in some �X x. Appendix D contains a
brief discussion of the restrictions imposed by such a decoupling cubature rule, and some indications of the
problem that would have to be solved to find such a cubature. To our knowledge, the relations of such cuba-
ture problems to polynomial chaos have not been explored.
5. Karhunen–Loève-based moment equations

The Karhunen–Loève moment equation (KLME) method, introduced in [50,83], offers a polynomial inter-
polation method with reduced coupling between polynomials: the field H is expanded in a multivariate power
series
HðxÞ � RaH aa ð58Þ

where, as before, the a denote monomials in the random variates x obtained from j by KLE. Inserting the
expansions of H and the log-conductivity j into Eq. (14), expanding the modified source he�j in a multivariate
power series, and comparing terms, one finds H a satisfies an equation in which the source-term involves var-
ious H a=x, so the coefficient fields H a may be found successively. The expectations E½a� being known, the var-
ious covariance functions involving H are directly computable. Calculations can become somewhat more
convenient, however, if one transforms the expansion of Eq. (58) into a Hermite series, which is inexpensive
as the basis-change coefficients, described in Appendix C, form sparse upper triangular matrices.

KLME seems attractive since, like MC, it requires only domain-sized solves and can be applied adaptively,
without initial decisions regarding the truncation set. But even in the univariate case, techniques based on
manipulation of ordinary power series may not perform well with the generality of PC expansions. Because
the moments E½xn� grow rapidly, simple series manipulations may not produce sensible results. The following
can occur, for example. An ordinary (nonstochastic) function / may admit a Taylor series expansion which
converges everywhere in the ordinary sense, and the expectation E½/ðxÞ� may exist for the Gaussian variate x,
yet an attempt to compute E½/ðxÞ� by taking the expectation term-by-term from the ordinary Taylor expan-
sion yields a non-convergent series. Use of ordinary series expansions in a stochastic setting may therefore
require careful attention. On the other hand, under mild conditions Cameron and Martin [11] establishes a
good Hermite series approximation to /, considered as a function of the Gaussian variate x.
6. Nicolaides interpolation

To obtain polynomial models, using the decouplings of Section 4, becomes increasingly expensive with
dimension: the cost of the cubatures is exponential in e, and the interpolatory matrix U s of Eq. (49) is full.
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Because these decouplings indicate that the PC attack on a stochastic equation is closely related to polynomial
interpolation in stochastic space, further examination of interpolation seems reasonable.

Using various sparse cubature schemes Xiu and Hesthaven [78] have considered a collocation solution of a
one-dimensional analog of Eq. (1) with independent uniform variates x. Although the sparse cubatures con-
sidered [38,78] involve many fewer knots than the full tensor-product HG-cubature, the number of required
knots is still a multiple of the number of PC terms sought. Furthermore, the effect of this multiple may be non-
negligible, since each function evaluation requires solving a realization of Eq. (1).

We briefly consider, as a simple alternative to the decouplings of Section 4.2, solving the polynomial inter-
polation problem with Nðe; dÞ knots by the method of Nicolaides [14]. In this method, interpolatory polyno-
mials are constructed using hyperplanes defined by barycentric coordinates relative to a given simplex. For the
standard simplex with vertices defined by the origin and standard basis vectors, one considers vectors
f � ðzx1

; zx2
; . . . ; zxeÞ of non-negative integers satisfying jfj 6 d and takes as knots the points with spatial coor-

dinates nf � f=d. The corresponding interpolatory polynomials are defined by
pfðxÞ � Px
Pzx�1

r¼0 ðdx� rÞ
zx!

� �
� Pd�jfj�1

r¼0 ½ðd � rÞ � dRx0x0�
ðd � jfjÞ!

" #
: ð59Þ
If instead, one dilates the standard simplex by the factor d, the knots coincide with the vectors f and the poly-
nomials become pfðx=dÞ. Carnicer and Gasca et al. [12] have obtained error estimates for such interpolations.
A simple algorithm thus results by solving Eq. (1) at the Nicolaides knots and using Eq. (59) to obtain a poly-
nomial model; statistics are available from the typically sparse matrix of moments.

7. Monte Carlo simulation

We next consider evaluation of the quality of a truncated PC expansion by comparison to naı̈ve MC.
Although it seems natural to value a PC solution in terms of the number of MC simulations required to obtain
the same accuracy, judging quality in this manner is problematic, since the exact problem solution is unknown.
Chorin [13] proposed use of univariate Hermite expansions to accelerate MC, and Maltz and Hitzl [52] sug-
gested the extension to multivariate expansions. Here we instead use such ideas to evaluate the accuracy of PC
expansions, rather than to improve MC. A PC solution provides a polynomial ‘‘easy function’’ [30] that can be
used to accelerate MC by variance reduction. This acceleration provides a natural, easily estimated measure of
the accuracy of the approximate PC coefficients.

Approximate statistics of a random function g can be obtained from a sequence gj of N independent real-
izations. Direct calculation shows the estimator
gN � N�1RN
j¼1gj ð60Þ
for the mean g converges subject to the estimate
E½jgN � gj� 6 E½ðgN � gÞ2�1=2 ¼ r=
ffiffiffiffi
N
p

; ð61Þ

where r is the standard deviation of g. As the mean g is unknown, convergence may be conveniently judged by
examining the fluctuation sizes between successive estimates; the fluctuation of gN with lag k is given by
E½ðgN � gNþkÞ2� ¼ kr2=½NðN þ kÞ�; ð62Þ

where r2 is the variance of g, and the log-fluctuation of the standard deviation is therefore
logðr
ffiffiffi
k
p
Þ � log½NðN þ kÞ�=2 	 logðr

ffiffiffi
k
p
Þ � logðNÞ ð63Þ
when N 
 k.
Another estimator for the mean head can be obtained from H N, using a finite approximation
H est � Ra2sH est
a ha ð64Þ
to the PC expansion H � RaH aha of the true field H. Each realization jj is associated with a collection xðjÞ of
specific values for the variates x, and the H j, obtained by solving Eq. (1) with log-conductivity jj, can be
approximated by substituting the xðjÞ into the approximate PC expansion to obtain
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H est
j � Ra2sH est

a haðxðjÞÞ ð65Þ
so the multivariate h-polynomials, defined by (21) and (17), are required here.
Consider the accelerated estimator
H acc
N � H est þ N�1RN

j¼1ðHj � H est
j Þ ð66Þ
where the H est is the estimated mean head obtained from the PC approximation (64). The naı̈ve estimator H N

has variance
r2
N ¼ N�1Ra6¼1H 2

a � N�1r2 ð67Þ

while the accelerated estimator H acc

N has variance
ðracc
N Þ

2 ¼ N�1Ra6¼1ðH a � H est
a Þ

2 � N�1ðraccÞ2; ð68Þ

where Ra6¼1 denotes summation over the exponent vectors haxix2x corresponding to nonconstant multivariate
h-polynomials ha, with the convention H est

a � 0 for a not belonging to s. Convergence of the modified estima-
tor is accelerated relative to the naı̈ve estimator by the factor
/l ¼ r=racc ð69Þ
in the sense that use of the accelerated estimator H acc
N leads to approximately the accuracy expected from H N/l

;
true acceleration, of course, only occurs if /l > 1. The factor /l can be easily be estimated using Eq. (63): in
log–log space, regression lines for the fluctuations of H N and H acc

N (both with lag k) should be approximately
parallel, with negative unit slope, separated by logð/lÞ. The acceleration measures the accuracy of a truncated
PC expansion, since 1=/l is the relative error associated with the truncation.

To assess the quality of a PC approximation, by comparing the unaccelerated and accelerated estimators as
just described, it is necessary to obtain the PC coefficients together with the variate values xðjÞ for each real-
ization jj and to evaluate the PC expansion at those values. The acceleration of higher order moments may be
gauged similarly, using the analogous variance reduced ‘‘easy functions’’
ðH mÞacc
N � H mest þ N�1RN

j¼1½H m
j � ðH est

j Þ
m�; ð70Þ
where Hj and H est
j are again the actual and estimated values of the head for a particular realization and the

uncentered moment H mest is precalculated from the approximation Hest.
In the discussion above, the acceleration is measured pointwise throughout the domain. Rather than

obtaining a domain-averaged version, we produce two estimates, differing in the order in which ratios are com-
puted and domain-averaging conducted. We describe these estimates for the mean, the variance is handled
similarly. The first estimate domain-averages the logspace fluctuations of the ordinary and accelerated MC
generators and, assuming that true results would be approximately governed by a linear law of the form
(63), uses the average separation of the lines of best fit to estimate the reduction of variance. This estimate
is thus obtained from the separation of the lines of best fit to log kH n � H nþkkX and log kH acc

n � H acc
nþkkX.

The second estimate domain-averages the difference of the logspace fluctuations and, assuming that the results
would be approximately constant, uses the average height of the line of best fit to estimate the reduction of
variance. The second estimate is obtained from the average height of the line of best fit to
k log jH n � Hnþkj � log jH acc
n � H acc

nþkjkX ð71Þ
A polynomial model may be compared to MC in the following manner. By the triangle inequality, an MC
estimate HN of the mean H is more accurate than the estimate H est provided by a polynomial model once
the MC estimate error is less than half the difference between the two estimates. Thus MC results are expected
to be more accurate than PC results when
jH N � H estj=2 > jHN � H j 	 r=
ffiffiffiffi
N
p
	

ffiffiffiffi
N
p

DMCN
=
ffiffiffi
k
p

; ð72Þ
where DMCN
� jH N � H Nþkj is the MC fluctuation. The left side of the inequality should tend to a constant

with increasing N, while the right side continues to decrease. Equivalently, MC wins once



C.P. Rupert, C.T. Miller / Journal of Computational Physics 226 (2007) 2175–2205 2187
ffiffiffiffiffiffiffiffiffi
k=N

p
jH N � H estj=2 > DMCN

ð73Þ

Higher order moments may be treated similarly.

8. Implementation and results

In principle, any simulator for the field j could be used, since the family x can then be recovered using Eq.
(A.3). However, as Xiu and Karniadakis [79] have noted, additional numerical issues would arise if a gener-
ator, different from that analyzed by the PC expansion, were used for MC; we therefore simulated j using the
computed KLE. The same generator is reused to compute the values of expð�jsÞ at the cubature points in the
solution of the decoupled system. After solving the decoupled systems of Section 4, the approximate solution
of the coupled PC system is recovered by polynomial interpolation back from the multivariate knots. As dis-
cussed in Section 3.2, the variates appearing in s may be a subset of those in x: that is, the KL simulator may
include variability for which the truncation set s does not account.

A pseudorandom variable cannot pass all statistical tests. PC analysis requires the nonconstant multivariate
probabilists’ h-polynomials (in a standard normal variate) to vanish in expectation, and good correspondence
between MC and PC results cannot be expected if the simulated expectations E½hn� are large. Bontemps and
Meddahi [8] have remarked that the vanishing of such polynomials is actually characteristic of the standard
normal distribution. This leads to a natural family of conditions E½hn� � 0ðn > 0Þ for the pseudorandom gen-
erator. We examined the ziggurat, described in Marsaglia and Tsang [54] and references therein, and imple-
mented by Matlab’s randn, as well as Box–Muller transformations of several uniform generators (Matlab’s
rand, the Sedgewick generator, L’Ecuyer’s MLCG [44]), and the Mathwork’s mex-file implementation of
Twister [58], before choosing the ziggurat for Nð0; 1Þ variate simulation. Estimators described in Section 7
were obtained using 1000 MC simulations with lag k � 10.

For computational purposes, the indices a of the h-polynomials can be encoded by a table, with the row
corresponding to a containing the exponent vector haxix2x. For total degree truncation sets, such a table with
degree-lexicographic ordering can be built quickly by recursion on the degree.

The operator r � Kr was discretized using a central five-point finite difference stencil. The operator
rj � r þ r2 was discretized using central second-order finite differences for the first term and a five point sten-
cil for the Laplacian. Stencils for the coupled system were obtained using the same projection technique
described in Section 3, that is, by multiplying the stencil with various h-polynomials and computing excep-
tions. The numerical versions of the computed PC fields then actually provide a truncated PC expansion of
the numerical version of H. The symmetric systems resulting from (1) were solved using the conjugate gradient
method and the nonsymmetric systems resulting from (14) were solved using the biconjugate gradient method.
In both cases, Jacobi preconditioning was used on a 50� 50 grid; for comparison purposes, some cases were
rerun on a 100� 100 grid.

8.1. Analytic example

Simple analytic examples can provide some information regarding the accuracy of PC methods. Given inde-
pendent standard normal variates x and corresponding functions kx (on domain X) satisfying
kxjoX � 0 ð74Þ

define
j � Rxkx x; K � expðjÞ; h � r2j: ð75Þ
Then Eq. (1) with boundary conditions
H joX � 0 ð76Þ

has analytic solution
H � expð�jÞ � 1 ð77Þ
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against which MC and PC solutions can be compared. We take
kxmn � cmn sinð2pmx=LxÞ sinð2pny=LyÞ ð78Þ

with normalization constants cmn and certain synthetic eigenvalues kmn. Double orthogonal variable decou-
pling requires computation of the source-terms from Eq. (46)
r � exp½jðx; fÞ�r �H sðx; fÞ ¼ � exp½jðx; fÞ�C�1
f R/�lRjaj61ðr2jaÞG�1

a/ U s
/f: ð79Þ
In this fashion, small dimensional examples can be constructed for which MC converges slowly while PC
methods provide accurate results; it is also possible to construct such examples for which the decoupled PC
methods do not produce acceptable results. Such examples also illustrate the reason for the decision in Section
3, to work with the conductivity in the form K � expðjÞ, rather than using a truncated Hermite series
�Ks � Ra�lKaha ð80Þ

with Ka found, for example, from Eq. (C.9); use of the truncated series can lead to erratic numerical break-
down. Since the statistics vary rapidly in space the two acceleration estimates described in Section 7 can differ
substantially for such examples.

Taking m1 ¼ n1 ¼ 1, m2 ¼ n2 ¼ 2, k11 ¼ 0:5, and k22 ¼ 0:25, using the rectangular truncation set described
in the notation of Section 3.2 as s ¼ sðx9

11x
9
22Þ or s ¼ ½9; 9�, and decoupling by DOV, produces mean and var-

iance estimates an order of magnitude more accurate than those provided by 1000 naı̈ve MC simulations. The
same example, using the exact collocation source term (rather than the truncated collocation source suggested
by the tensor-product HG cubature) in the collocation decoupling actually provides a slightly more accurate
variance estimate than provided by the orthogonal variables decoupling (with errors measured in the L1 spa-
tial norm). The Nicolaides interpolation based on the dilated simplex is completely unsatisfactory for this
example; the analogous interpolation based on the undilated simplex reproduces some basic features of the
exact solution (in the degree five case, say) but suffers rapid breakdown with increasing degree and does
not appear competitive with the tensor-product interpolation.

8.2. Non-analytic investigation

Using a 20-term KLE to simulate the log-conductivity field, we solved (14) in the source-free case on the
unit square with two opposite no-flow and two opposite constant head boundaries
H ½ðx1; 0Þ;x� � 0;

H ½ðx1; 1Þ;x� � 1
ð81Þ
for a range of domain sizes (measured in correlation lengths .) and variances of the log-conductivity j, assum-
ing the Gaussian covariance described by Eq. (34). Polynomial models were evaluated by calculating MC
accelerations as described in Section 7; not all variates used for the field simulator are necessarily included
in the analysis leading to the models. To compare polynomial models to MC, we used Eq. (73).

Four different polynomial models were compared: the one obtained from HG cubature, the one obtained
by Nicolaides interpolation, the one obtained from the coupled PC system in Eq. (15), and the one obtained by
KLME. Table 2 exhibits results for the HG cubature associated with the DOV decoupling, Table 3 for Nicola-
ides interpolation, Table 4 for the coupled PC systems, and Table 5 for the KLME method. The truncations
for Table 2 were chosen to involve truncations sets of approximately the same size as those used in Tables 3–5,
so that the number of function evaluations is approximately equivalent for all cases shown. These tables all
exhibit MC acceleration factors /l and /r for head mean lH and variance r2

H, as functions of domain size
.�1 � .�1 and log-conductivity variance r2

j. In calculation of Table 5, solver failures of unknown origin
affected one row (marked by an asterisk), which was therefore recalculated independently.

Several distinct issues contribute to the nonagreement between the numerical acceleration estimates given in
each row of the tables. As discussed in Section 7, the estimates /lðest1Þ and /lðest2Þ, and similarly the esti-
mates /rðest1Þ and /rðest2Þ, differ in the order in which ratios and domain-averages were calculated. See
Fig. 1 in which the average gap between the lower lines represents the first estimate, while the average height



Table 2
Estimated MC acceleration from HG cubature

Degree vector r2
j .�1 /lðest1Þ /lðest2Þ /rðest1Þ /rðest2Þ

½4442� 0.5 1 5.712 6.009 5.533 5.460
1.0 5.945 6.360 5.744 6.381
1.5 4.054 4.141 3.825 3.677
0.5 2 2.168 2.160 2.174 2.084
1.0 2.710 2.900 2.629 2.632
1.5 2.585 2.827 2.505 2.617
0.5 3 1.925 1.904 1.857 1.842
1.0 1.726 1.794 1.770 1.818
1.5 1.720 1.682 1.733 1.639

½3333� 0.5 1 5.193 5.817 5.155 5.840
1.0 5.147 5.659 4.995 5.566
1.5 3.955 4.108 4.116 4.089
0.5 2 2.537 2.569 2.609 2.726
1.0 2.411 2.458 2.266 2.366
1.5 2.335 2.469 2.101 2.404
0.5 3 1.900 1.883 1.769 1.874
1.0 1.580 1.519 1.659 1.519
1.5 1.782 1.804 1.865 1.841

½22222� 0.5 1 9.461 10.640 9.088 10.625
1.0 7.979 8.865 8.094 9.286
1.5 9.255 10.889 8.655 9.595
0.5 2 3.177 3.532 3.144 3.666
1.0 3.358 3.634 3.292 3.565
1.5 3.090 3.394 2.864 3.015
0.5 3 2.513 2.528 2.507 2.383
1.0 2.042 2.145 1.960 2.008
1.5 2.324 2.225 2.227 2.292

½11111111� 0.5 1 13.206 14.850 12.380 15.913
1.0 6.208 6.223 8.655 9.689
1.5 6.294 6.820 5.306 6.557
0.5 2 4.910 4.950 4.863 5.128
1.0 4.652 4.417 4.080 3.974
1.5 3.892 3.780 3.560 3.650
0.5 3 3.357 3.231 3.220 3.351
1.0 2.980 2.977 2.915 3.197
1.5 2.853 3.009 2.473 2.669
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of the upper line represents the second estimate. There is no reason to expect the first and second estimates to
agree precisely. Moreover, the final estimates are obtained by exponentiating the results of such linear regres-
sions in log–log space based on MC simulations. But the natural measure of the error is the reciprocal of the
acceleration. For example, a table row with acceleration factors ranging from 40 to 50 would correspond to
estimated relative errors of 2.0–2.5%. On balance, the table data appear surprisingly consistent.

8.3. Discussion

8.3.1. Acceleration factors

As discussed in Section 3.3, the number of variates required to accurately describe the field j will increase
with domain size (measured in correlation lengths). For a fixed truncation, increasing domain size increases
the importance of unsimulated variates, and we therefore expect accuracy to decrease with domain size.
The loss of accuracy, however, persists for the truncation ðe; dÞ ¼ ð20; 2Þ, although the 20-term KLE we
use as a simulator models the effect of all 20 variates to second order in this case.

Acceleration factors reported in the tables estimate the accuracy with which the various methods capture
the influence of the variates. Our reported factors are overly optimistic because we simulate, not the full



Table 3
Estimated MC acceleration from Nicolaides interpolation

(e,d) r2
j .�1 /lðest1Þ /lðest2Þ /rðest1Þ /rðest2Þ

ð5; 5Þ 0.5 1 9.918 11.341 10.087 12.735
1.0 5.394 6.356 7.259 8.160
1.5 6.440 7.924 8.625 10.521
0.5 2 3.646 3.878 3.845 4.093
1.0 2.940 2.921 3.151 3.377
1.5 2.136 2.204 2.352 2.453
0.5 3 2.379 2.442 2.504 2.358
1.0 2.058 2.227 2.089 2.226
1.5 2.091 2.155 2.220 2.211

ð6; 4Þ 0.5 1 11.648 12.829 12.454 14.031
1.0 6.996 7.762 9.502 10.670
1.5 5.085 5.519 7.252 8.810
0.5 2 3.356 3.813 3.456 3.994
1.0 3.496 3.639 3.762 4.397
1.5 2.895 3.378 3.611 4.357
0.5 3 3.079 3.187 2.873 3.112
1.0 2.472 2.438 2.427 2.351
1.5 2.191 2.330 2.323 2.357

ð9; 3Þ 0.5 1 15.334 15.779 18.390 22.583
1.0 10.063 11.790 12.979 18.576
1.5 4.127 4.424 7.441 10.636
0.5 2 6.349 6.246 7.089 7.501
1.0 3.437 3.601 5.366 6.192
1.5 2.546 2.519 3.914 4.437
0.5 3 4.569 4.589 4.489 4.509
1.0 2.823 2.763 3.345 3.502
1.5 2.549 2.568 3.141 3.071

ð20; 2Þ 0.5 1 9.396 10.877 15.398 17.854
1.0 5.654 6.471 10.067 12.613
1.5 5.711 6.470 9.339 10.701
0.5 2 5.586 5.381 8.463 9.218
1.0 3.016 3.176 5.468 6.475
1.5 2.939 2.984 3.853 3.860
0.5 3 6.146 6.020 8.146 8.149
1.0 3.031 3.000 4.748 5.174
1.5 2.572 2.584 3.006 3.206
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intended Gaussian field, but rather a truncated version that involves only a finite number of variates. Using
more terms, from the KL expansion of the field, in these simulations should reduce the acceleration factors.

Because stencils for the PC systems were produced by inserting the KL and PC expansions into the deter-
ministic stencils and projecting, as described in Section 3, the numerical PC coefficients reflect truncated PC
system approximations to the random variates forming the numerical H field. The latter variates change with
the discretization, but given sufficiently many PC terms one expects from the Cameron–Martin theorem that
the numerical PC coefficients will faithfully model the numerical field, whether or not the numerical field accu-
rately models the intended field. In support of this view, consider Table 6 which exhibits the acceleration fac-
tors computed using a domain one correlation length in size for the truncations ðe; dÞ ¼ ð5; 5Þ and
ðe; dÞ ¼ ð9; 3Þ with various discretizations. For Table 4 acceleration factors smaller than about 15 (that is,
in all ðe; dÞ ¼ ð5; 5Þ cases), there is a spread of about 3% between the various estimates; when the acceleration
factors are near 20 (that is, in the ðe; dÞ ¼ ð9; 3Þ case with r2

j ¼ 1:5), the spread is about 2%; and for acceler-
ation factors larger than about 35 (that is, in the r2

j ¼ 0:5 and r2
j ¼ 1:0 cases of ðe; dÞ ¼ ð9; 3Þ), the spread is

only about 1%. Data in the tables indicate acceleration factors for a given truncation decrease with increasing
variance r2

j and with increasing domain size for all methods considered.



Table 4
Estimated MC acceleration from coupled PC system

(e,d) r2
j .�1 /lðest1Þ /lðest2Þ /rðest1Þ /rðest2Þ

ð5; 5Þ 0.5 1 10.929 13.796 10.376 14.065
1.0 11.911 15.269 11.124 14.223
1.5 11.938 15.582 12.032 14.968
0.5 2 4.429 5.131 4.157 4.652
1.0 3.638 4.016 3.784 4.408
1.5 3.705 4.156 3.653 4.045
0.5 3 2.339 2.547 2.549 2.356
1.0 2.352 2.365 2.305 2.291
1.5 1.991 2.072 2.033 2.106

ð6; 4Þ 0.5 1 11.619 13.554 11.198 13.175
1.0 13.213 15.758 12.747 14.883
1.5 11.480 13.609 10.571 11.298
0.5 2 4.094 4.578 3.894 4.468
1.0 3.322 3.660 3.326 3.211
1.5 3.153 3.102 3.182 3.062
0.5 3 2.477 2.506 2.411 2.498
1.0 2.167 2.173 2.219 2.188
1.5 2.452 2.634 2.383 2.537

ð9; 3Þ 0.5 1 43.130 48.143 40.242 44.161
1.0 36.731 41.928 35.687 39.881
1.5 19.151 20.978 18.501 20.309
0.5 2 9.770 10.779 9.233 10.457
1.0 9.069 9.401 8.881 9.334
1.5 6.330 6.739 6.306 6.618
0.5 3 4.530 4.684 4.298 4.573
1.0 4.410 4.657 4.219 4.404
1.5 3.444 3.599 3.269 3.647

ð20; 2Þ 0.5 1 24.366 26.731 25.480 28.972
1.0 16.794 18.770 16.628 17.416
1.5 16.468 20.109 15.082 18.191
0.5 2 15.337 15.213 15.464 16.374
1.0 9.164 9.123 9.257 9.628
1.5 6.360 6.433 6.247 6.241
0.5 3 13.682 14.253 13.814 15.227
1.0 7.009 6.965 6.949 6.543
1.5 5.222 5.116 5.356 5.348
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The first effect seems natural: had we not renormalized our variates x by absorbing their deviations into the
eigenfunctions jx, the leading term of each h-polynomial ha would include these variances; the rescaling must
transfer this contribution to the H a, which consequently must scale as polynomials in rj; and thus neglected
higher-order terms become more important as the variance increases.

The second effect may be more complicated. The slower eigenvalue decay associated with larger domains
(cf. Section 3.3) has several consequences. As domain size increases, later eigenvalues become relatively more
important, and neglected higher-order terms become more important as with increasing r2

j. In particular, any
failure to model all variates used by the MC simulator will produce larger errors on larger domains, as unmod-
eled contributions to the variability of j increase. There being no ignored variates for our ð20; 2Þ-truncation
(because our simulation of the log-conductivity field involved only the 20 most important eigenpairs), the
decrease in accuracy with increasing domain size in this case cannot be attributed only to missing variates.
That the effect is seen in the case ðe; dÞ ¼ ð20; 2Þ, not only for PC but for KLME and the Nicolaides interpo-
lation as well, provides additional evidence that the true H is more complicated and requires a higher-order
analysis when the eigenvalues are more nearly equal than when there are relatively few large eigenvalues with
the rest small.



Table 5
Estimated MC acceleration from KLME

(e,d) r2
j .�1 /lðest1Þ /lðest2Þ /rðest1Þ /rðest2Þ

ð5; 5Þ 0.5 1 14.046 16.701 13.381 15.917
1.0 11.662 14.425 12.100 14.388
1.5 10.478 13.062 10.385 13.051
0.5 2 4.143 4.740 4.073 4.482
1.0 3.154 3.228 2.940 2.982
1.5 3.569 3.757 3.381 3.399
0.5 3 2.478 2.568 2.367 2.490
1.0 2.172 2.339 2.072 2.169
1.5 2.057 1.948 1.957 1.870

ð6; 4Þ 0.5 1 11.733 13.248 11.851 13.721
1.0 9.524 11.448 8.834 10.922
1.5 7.684 9.150 8.477 9.839
0.5 2 4.250 4.541 3.873 4.283
1.0 3.221 3.410 3.098 3.320

* 1.5 3.225 3.286 3.119 3.196
0.5 3 2.508 2.529 2.472 2.551
1.0 2.210 2.402 2.147 2.425
1.5 2.192 2.307 2.286 2.358

ð9; 3Þ 0.5 1 37.367 43.170 30.932 38.853
1.0 26.062 30.324 25.603 30.489
1.5 12.621 14.030 13.405 13.136
0.5 2 10.417 11.752 10.140 11.176
1.0 5.437 5.314 5.257 5.415
1.5 3.373 3.429 3.248 3.199
0.5 3 4.993 5.269 4.657 4.990
1.0 3.596 3.596 3.508 3.473
1.5 3.095 3.287 2.963 3.166

ð20; 2Þ 0.5 1 19.629 24.208 19.807 24.280
1.0 11.826 14.244 10.241 11.471
1.5 6.615 7.369 6.341 6.276
0.5 2 10.391 11.821 8.727 8.977
1.0 3.809 3.738 3.559 3.332
1.5 3.710 3.858 3.369 3.323
0.5 3 9.185 9.458 8.463 8.862
1.0 5.098 5.674 3.939 4.098
1.5 3.020 2.950 2.394 2.267
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For PC, there is a further possible contribution, associated with inaccurate calculation of the coefficient fields
H a, because truncation eliminates the full coupling between the defining equations. This effect is more difficult
to probe, because different truncations ignore different coupling effects. On small domains, where relatively few
eigenvalues are important, one might expect the coupling among the first nine variates to be more important the
coupling between the first nine and the last eleven, while the latter coupling effects become relatively more sig-
nificant with increasing domain size. To test this, we replaced H a computed by PC for the ð20; 2Þ-truncation by
the corresponding H a computed for the ð9; 3Þ-truncation; the replacements were made for the H a with index a in
the set of 55 indices sð9; 3Þ \ sð20; 2Þ common to both truncations. Acceleration factors were computed as
before by MC, using the ð20; 2Þ-table with the indicated replacements. Results are exhibited in Table 7, which
suggests some improvement only on 1� 1 and 2� 2 domains and only in the small variance case and suggests
some deterioration of the approximation in the remaining cases on the 1� 1 domain. In general, it is not clear
how to improve the estimated H a except by using larger coupled systems.

8.3.2. Polynomial chaos and Karhunen-Loève moment equations

The PC approach and KLME both yield polynomial models without much additional computation. The
comparative accuracy of these methods is therefore interesting. Comparing Tables 4 and 5 indicates that
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Fig. 1. MC and accelerated MC for truncation sð9; 3Þ on a domain 1� 1 correlation lengths in size, assuming r2 ¼ 1. The lower two lines
exhibit convergence of the MC methods; their separation provides the first acceleration estimate. The upper line provides the second
estimate.

Table 6
Discretization effect on relative error

Grid (e,d) r2
j .�1 % ðlest1Þ % ðlest2Þ % ðrest1Þ % ðrest2Þ

25� 25 ð5; 5Þ 0.5 1 7.78 6.26 8.32 6.60
50� 50 9.15 7.25 9.31 7.11
75� 75 8.65 7.61 8.84 7.54

100� 100 8.82 7.25 9.06 7.49

25� 25 1.0 9.17 7.29 9.14 7.40
50� 50 8.39 6.55 8.99 7.03
75� 75 8.34 6.76 8.25 6.95

100� 100 7.32 5.77 7.31 6.15

25� 25 1.5 9.04 6.60 9.33 6.86
50� 50 8.37 6.42 8.31 6.68
75� 75 8.19 6.21 8.00 6.82

100� 100 8.76 7.18 8.77 7.37

25� 25 ð9; 3Þ 0.5 1 2.52 2.11 2.61 2.11
50� 50 2.32 2.08 2.48 2.26
75� 75 1.95 1.61 2.07 1.61

100� 100 2.29 2.08 2.45 2.27

25� 25 1.0 2.98 2.72 3.11 2.90
50� 50 2.72 2.38 2.80 2.51
75� 75 2.40 2.08 2.39 2.13

100� 100 2.67 2.36 2.75 2.47

25� 25 1.5 3.86 3.36 4.17 3.43
50� 50 5.22 4.77 5.41 4.92
75� 75 4.41 3.96 4.58 4.40

100� 100 5.13 4.70 5.32 4.85
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Table 7
Effect of patching coefficients from (9,3) into (20,2)

(e,d) r2
j .�1 /lðest1Þ /lðest2Þ /rðest1Þ /rðest2Þ

ð20; 2Þ 0.5 1 33.920 38.636 30.321 35.543
1.0 14.060 15.205 14.980 17.008
1.5 12.804 14.589 12.502 13.388
0.5 2 23.278 25.249 21.706 22.947
1.0 9.298 9.497 9.407 9.598
1.5 6.594 6.488 6.615 6.725
0.5 3 13.056 12.480 12.867 13.089
1.0 7.920 8.471 8.217 8.965
1.5 5.316 5.129 5.267 4.894
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KLME may outperform PC when using a small number of variates to approximate a field of low variability.
With increasing variability and number of variates, PC typically outperforms KLME.

Use of inequality (73) to compare the accuracy of the polynomial model and MC is illustrated for estimates
in Figs. 2–4. The straight lines provide the first acceleration estimate, while the irregular line provides the left
side of inequality (73). Once the irregular line permanently falls above the upper straight line, representing the
MC fluctuations, the MC estimate of the mean has become the more accurate of the two. In Fig. 2, cross-over
occurs prior to 100 MC simulations, while Nð20; 2Þ ¼ 231. In Fig. 3, the irregular line does not fall above the
upper line, indicating Nð5; 5Þ ¼ 252 iterations of KLME outperform 1000 MC simulations. In Fig. 4, the cou-
pled PC system for the truncation s ¼ sð9; 3Þ apparently outperform 600 but not 1000 MC simulations.

Comparison of KLME to MC by this method is straightforward, since KLME involves only domain-sized
solves. For the given truncations s ¼ sðe; dÞ, with few exceptions, KLME wins over 1000 MC simulations, and
in the exceptional cases KLME clearly provides better accuracy than would be obtained by MC using Nðe; dÞ
solves. Comparison of PC to MC by the same method is less meaningful, since the coupled PC system does not
involve domain-sized solves and because a cubature decoupling would result in loss of accuracy, if it even
existed. In almost all cases, the results obtained from the coupled PC system are more accurate than those
obtained from 1000 MC realizations, and in the exceptional cases at least 600 MC realizations are needed
to produce more accurate results. In our unoptimized code, the time needed for 1000 MC solves, together with
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Fig. 2. Comparison of MC and Nicolaides interpolation for truncation sð20; 2Þ on a domain 1� 1 correlation lengths in size, assuming
r2 ¼ 1:5.
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Fig. 3. Comparison of MC and KLME methods for truncation sð5; 5Þ on a domain 2� 2 correlation lengths in size, assuming r2 ¼ 1:5.
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Fig. 4. Comparison of MC and PC methods for truncation sð9; 3Þ on a domain 2� 2 correlation lengths in size, assuming r2 ¼ 1:5.
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the inexpensive auxiliary computations needed to compute the variance reduced estimators, is typically about
twice that needed for the coupled PC system solve.

Individual matrix–vector multiplies, associated with the coupled systems for the truncation sets in Table 4,
are about three orders of magnitude more costly than those associated with domain-sized solves. KLME
requires eNðe; d � 1Þ auxiliary matrix multiplications, but this extra cost associated with computing the prob-
lems to solve is small in our examples.

Thus, both PC and KLME appear to be competitive with MC on small domains. However, it is important
to note that the feasibility of PC in this case depends heavily on the possibility of rewriting the stochastic equa-
tion in the form given by Eq. (14); projecting instead from Eq. (1) leads to intractably large systems. For both
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methods, it is clear that modeling enough variates becomes important as domain size increases, while on smal-
ler domains a significant advantage can be obtained by ignoring some variates in order to use a higher degree
model.

8.3.3. Interpolation and cubature

Although HG cubature can produce good results when the number of required variates is small, our data
might suggest that, for similar effort, Nicolaides interpolation outperforms HG cubature. However, the large
size of rectangular truncation sets obstructs matching of the number of variates and degree to the problem,
and the data illustrate the importance of an appropriate truncation, as is clear from the PC and KLME data:
thus, for example, for r2

j ¼ 1 on a 1� 1 domain, the truncation set s ¼ sð9; 3Þ provided better results for both
PC and KLME than any other triangular truncation set considered, while for r2

j ¼ 1:5 on a 3� 3 domain, the
truncation set s ¼ sð20; 2Þ provides the best result.

Compared to PC and KLME, Nicolaides interpolation does not perform particularly well. This is not sur-
prising, because no effort has been devoted to the optimal choice of the knots. Nicolaides interpolation with
the undilated standard simplex, in fact, may negatively accelerate MC convergence; we used the dilated
simplex.

Because the cost of obtaining a polynomial model from a cubature rule involves full matrices and is there-
fore is quadratic in the size of the truncation set, it is natural to seek interpolatory methods which involve
relatively sparse matrices, as would be the case with Nicolaides interpolation. We do not know if good inter-
polatory methods, that can be applied adaptively, can be found for non-rectangular truncations. Stable inter-
polatory methods exist, in principle at least, for any finite set of bounded functions [55] but may not be
convenient when the set of functions varies. The sparse cubature methods examined in [78] can be applied
adaptively, by choosing nested knots, but have substantial overhead costs. KLME offers an adaptive method,
which is competitive in the low-variance case with PC expansions, when not too many terms are included in
the expansion. Both cubature rules and interpolatory methods deserve further examination as approaches to
stochastic problems; for more information, see [7,10,12,15,20,33,48,71,81].

8.3.4. Remarks on the non-Gaussian case
Two-point statistics cannot reproduce important features, such as networks of high-permeability channels

[19], of interest to hydrologists. There has therefore been some interest in multipoint statistics, and non-Gauss-
ian distributions are then indicated, because multivariate normal densities are completely characterized by
their moments to second order.

We now remark on the effect of eliminating the independent normal variate assumption. For independent
variates, of course, calculations still reduce to manipulations of univariate polynomials; Koekoek and Swart-
touw [42] is a useful reference. Without assuming independence, one might begin as before, approximating the
conductivity as a function Kðx;-Þ � /½,ðx;-Þ� of some auxiliary field expansible in a finite series
, � ,þ R-,-- ð82Þ

with uncorrelated (but not necessarily independent) variates -, which may be assumed centered with unit var-
iance. As indicated in Appendix D.3.2, one obtains, at least for independent variates, a three-term recurrence
for an orthonormal collection of multivariate polynomials pað-Þ. Beyond the problem of selecting a multivar-
iate density, there is the further difficulty of computing the high-dimensional integrals required for the recur-
rence coefficients, when the number of variates is large.

The leading monomial indexing remains possible in many cases, but simple formulae for the X a
bc are not

expected without special assumptions, although convenient calculation may nevertheless sometimes be pos-
sible. Replacing each - with the corresponding X -, in a finite recurrence for the polynomials pað-Þ, pro-
duces some valid recurrence for the matrices X a. A truncation of X a, corresponding to a given truncation
set s, can therefore be computed by appropriately enlarging the truncation set to some s0 (depending on both
s and a) and replacing each - in pa with the s0-truncation of X -: the desired s-truncation of X a lies embed-
ded within the resulting matrix (which, however, is not generally the s 0-truncation of X a). In the case of inde-
pendent variates, as previously, the �X - are simultaneously diagonalizable precisely for rectangular
truncations.
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Auxiliary calculations depend on certain series and hence not only on the joint density of the - but on the
particular function /ð,Þ. The case K � , is straightforward when the source term is expansible in the desired
orthogonal series, because the matrices �X - are sparse; moreover, for independent variates, the DOV decou-
pling applies for rectangular truncations. Thus [21] consider K � , involving independent identically-distrib-
uted (iid) uniform variates - and apply DOV to precomputed rectangular truncations. Similarly with a linear
conductivity assumption and using generalized PC expansions from various distribution functions, [79] com-
pare polynomial approximation and MC results.

Enforcing the natural requirement Kðx;-Þ > 0 will limit the possible variates -: it would be inappropriate
to use an expansion K � , with normal - (say). Therefore, other functional dependencies K � / may be
unavoidable. To illustrate that other issues may arise from the interaction of / with the density, consider
iid exponential variates - with K � expð,Þ. The univariate X a

bc are known for Laguerre polynomials [26] so
the X a

bc can be computed. The various Gab � E½expð,Þpapb� of Eq. (9) can be recovered from the generating
function for the univariate Laguerre polynomials, analogous to the computations in Appendix C (provided
expð,Þ and h are expansible; see [32] for conditions). Rewriting Eq. (1) in the more convenient form of Eq.
(14) does not represent a useful option unless h=K admits a Laguerre series. Unfortunately, it is possible that
neither expð,Þ nor h expð�,Þ can be developed in Laguerre polynomials. The possibility of expanding expð,Þ
depends on the point values of the various fields ,-, which are determined by the covariance function of ,.

In general, there may also be pragmatic reasons to choose models with non-Gaussian variates. Assuming
lognormal K and constant S, for example, the transient flow equation
SotH �r � KrH ¼ h ð83Þ

leads to an analog of Eq. (9)
SotH a � Rar � GbarH a ¼ hb ð84Þ

in which the full matrix G � ðGbaÞ remains inconvenient, while choosing instead K � ,, with independent vari-
ates - governed by gamma distributions (say), would replace the G by a sparse matrix.
9. Conclusions

Using acceleration of MC by Hermite series, and assuming a Gaussian covariance function that decays with
separation, we compared the quality of polynomial models for stochastic flow obtained by several methods,
including numerical cubature, Nicolaides interpolation, truncated PC expansions, and KLME. Such models
seem attractive because when available they might provide fast simulators and can be used to compute covari-
ance functions.

We examined an analytic problem, showing that numerical cubature techniques can provide high quality
results. Assessment by Monte Carlo, however, suggests the existing numerical cubatures are potentially useful
only when the domains are relatively small (as measured in correlation lengths). The cubatures provide decou-
plings of certain truncated PC systems, and these decouplings suffer from a dimensional curse: system size
grows exponentially with the number of variates required and so the methods rapidly become intractable.
The method of DOV requires commuting truncations of the Jacobi matrices, available only for rectangular
truncation sets. A collocation by cubature attack for non-rectangular truncation sets will either require more
function evaluations than the size of the truncation set, force the approximations to the truncated Jacobi
matrices to commute by miscomputing entries, or fail to respect the orthogonality of the h-polynomials asso-
ciated with the truncation set. Prospects for generalizing the decouplings therefore seem limited.

Nicolaides interpolation does not appear to produce satisfactory results if applied without careful attention
to knot location. In general, interpolatory methods could reduce the dimensional problems associated with
increasing domain size, provided the knots and weights can be obtained without substantial overhead costs.
Unless such difficulties are resolved, we expect interpolatory methods will not be useful for stochastic flow
problems.

Truncated PC systems can provide accurate results. Because the relative error for a fixed truncation
increases with increasing domain size and variance, computational resources required for a given accuracy
similarly increase. There remains, however, the matter of appropriately choosing the truncation set. KLME
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typically provides somewhat less accurate results than PC. In particular, the relative error associated with a
given truncation still increases with domain size and variance. It nevertheless has the advantage that it can
be implemented adaptively and requires only solution of modified versions of the original equation. Condi-
tions under which KLME converges seem to be unknown. Our investigations further indicate that on large
domains, meaningful acceleration of MC by Hermite series can require a significant number of terms.

We conclude that when the number of required variates is small, numerical cubature is the method of
choice. When the number of required variates eliminates the cubature option, PC should be considered as
an alternative if an appropriate truncation can be found consistent with available memory constraints. When
such a truncation cannot be identified, KLME should be considered, unless higher order nonlinearities are
expected. When such nonlinearities exist, it is unclear whether KLME will converge, and then MC may be
the only option. For large domains of a scale of several correlation lengths or larger, which will typically
require many variates to resolve, or for high variability cases, Monte Carlo methods will remain the method
of choice unless better interpolatory techniques become available.
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Appendix A. Karhunen–Loève expansion of a random field

The KLE of a random field W on domain X may be obtained formally by seeking an expression
Wðx;xÞ ¼ WðxÞ þ RxWxðxÞx ðA:1Þ

in spatially orthogonal functions WxðxÞ and uncorrelated centered variates x; then
E½ðW�WÞx� ¼ WxE½x2� ¼ Wxr2
x; ðA:2ÞZ

X
WxðW�WÞ dx ¼ x

Z
X

W2
x dx ¼ xkWxk2

; ðA:3Þ

cWðx; x0Þ ¼ Ef½Wðx;xÞ �Wðx;xÞ�½Wðx;xÞ �Wðx0;xÞ�g ¼ RxWxðxÞWxðx0Þr2
x; ðA:4ÞZ

X
cWðx; x0ÞWxðx0Þ dx0 ¼ Rx0Wx0 ðxÞr2

x0

Z
X

Wx0 ðx0ÞWxðx0Þ dx0 ¼ r2
xkWxk2WxðxÞ ðA:5Þ
so that ðWx; r2
xkWxk2Þ is an eigenpair of the integral operator
L½/� �
Z

X
cWðx; x0Þ/ðx0Þ dx0 ðA:6Þ
having as its kernel the covariance function cW. The relative sizes of the corresponding eigenvalues naturally
describe the relative importance of the variates x. Truncating a KLE produces a KLE of the field defined by
the truncation. When W is a Gaussian field, the variates x are also normal and, renormalizing, we may assume
x � Nð0; 1Þ, so kWxk2 is the eigenvalue associated with the eigenfunction Wx. Since, the family x is uncorre-
lated and jointly normal, it comprises independent variates. The KLE applies equally well to vector processes
[29]. For further details on KLE, see Adler [2], Ghanem and Spanos [25], Hernandez [31] and [63, pp. 97–98].

Appendix B. Notational examples

The entry of the univariate X-matrix with a ¼ 1; b ¼ 2; c ¼ 3 can be computed as
X a
bc ¼ E½haðxÞhbðxÞhcðxÞ� ¼ E x� x2 � 1ffiffiffi

2
p � x3 � 3xffiffiffi

6
p

� �
: ðB:1Þ
Such calculations need not be performed explicitly: the results are known and are provided in Appendix C.
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For x ¼ fx1;x2;x3;x4g and a � x3
1x3x2

4, the vector of exponents of a is hax1
; ax2

; ax3
; ax4
i ¼ h3; 0; 1; 2i

and
haðxÞ � h3ðx1Þh0ðx2Þh1ðx3Þh2ðx4Þ ¼
x3

1 � 3x1ffiffiffi
6
p � 1� x3 �

x2
4 � 1ffiffiffi

2
p ðB:2Þ
with leading term x3
1x3x2

4. In practice, such products are needed when using polynomial models, for example
to evaluate haðxÞ for specific numerical values of the variates x.

Again with the same x and a, but b � x2
1x

3
2x3x3

4 and c � x1x3
2x

2
3x4
X a
bc � X

ax1
bx1

cx1
X

ax2
bx2

cx2
X

ax3
bx3

cx3
X

ax4
bx4

cx4
¼ X 3

21X 0
33X 1

12X 2
31: ðB:3Þ
Again with the same x and a
x1haðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax1
þ 1

p
hax1
þ ffiffiffiffiffiffiffi

ax1

p
ha=x1

¼ 2hx4
1
x3x2

4
þ

ffiffiffi
3
p

hx2
1
x3x2

4
ðB:4Þ
while
x2haðxÞ ¼ hx3
1
x2x3x2

4
; ðB:5Þ
where ax2
¼ 0, because x2 does not divide a, and the second term of the three-term relation has therefore been

dropped.
Again with the same x, the truncation set
sðx2
1x2x3Þ ¼ ½2; 1; 1; 0� ¼ ½2; 1; 1�

� f1;x1;x2;x3;x
2
1;x1x2;x1x3;x2x3;x

2
1x2;x

2
1x3;x1x2x3;x

2
1x2x3g: ðB:6Þ
For x � fx1;x2g with the truncation set sð2; 2Þ � f1;x1;x2;x2
1;x1x2;x2

2g, here is one of the truncated Jacobi
matrices:
�X x1 ¼

X x1
1;1 X x1

1;x1
X x1

1;x2
X x1

1;x2
1

X x1
1;x1x2

X x1

1;x2
2

X x1
x1;1

X x1
x1;x1

X x1
x1;x2

X x1

x1;x2
1

X x1
x1;x1x2

X x1

x1;x2
2

X x1
x2;1

X x1
x2;x1

X x1
x2;x2

X x1

x2;x2
1

X x1
x2;x1x2

X x1

x2;x2
2

X x1

x2
1
;1

X x1

x2
1
;x1

X x1

x2
1
;x2

X x1

x2
1
;x2

1

X x1

x2
1
;x1x2

X x1

x2
1
;x2

2

X x1
x1x2;1

X x1
x1x2;x1

X x1
x1x2;x2

X x1

x1x2;x2
1

X x1
x1x2;x1x2

X x1

x1x2;x2
2

X x1

x2
2
;1

X x1

x2
2
;x1

X x1

x2
2
;x2

X x1

x2
2
;x2

1

X x1

x2
2
;x1x2

X x1

x2
2
;x2

2

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

0 X 1
01 0 0 0 0

X 1
10 0 0 X 1

12 0 0
0 0 0 0 X 1

01X 0
11 0

0 X 1
21 0 0 0 0

0 0 X 1
10X 0

11 0 0 0
0 0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
¼

0 1 0 0 0 0
1 0 0

ffiffiffi
2
p

0 0
0 0 0 0 1 0
0

ffiffiffi
2
p

0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
: ðB:7Þ
Eq. (38) thus assumes the form
ðr�j � r þ r2Þ �H ¼ ��G�1�h; ðB:8Þ
where
�j � jIþ kx1
�X x1 þ kx2

�X x2 : ðB:9Þ

I is the identity, �H and �h are the truncated vectors with components H a and ha, and �G�1 is the truncated matrix
with components G�1

ab .
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If Eq. (38) is discretized by finite differences, with domain-sized matrices Mð?Þ discretizing r? � r and D2

discretizing $2, then projecting from the discretized equation produces a system matrix with block
decomposition
MðjÞ þ D2 Mðjx1
Þ Mðjx2

Þ 0 0 0

Mðjx1
Þ MðjÞ þ D2 0

ffiffiffi
2
p

Mðjx1
Þ Mðjx2

Þ 0

Mðjx2
Þ 0 MðjÞ þ D2 0 Mðjx1

Þ
ffiffiffi
2
p

Mðjx2
Þ

0
ffiffiffi
2
p

Mðjx1
Þ 0 MðjÞ þ D2 0 0

0 Mðjx2
Þ Mðjx1

Þ 0 MðjÞ þ D2 0

0 0
ffiffiffi
2
p

Mðjx2
Þ 0 0 MðjÞ þ D2

0
BBBBBBBBB@

1
CCCCCCCCCA
: ðB:10Þ
For total degree truncations s ¼ sðe; dÞ, the system matrix involves Nðe; dÞ2 blocks, of which only
ð2eþ 1ÞNðe; d � 1Þ þ Nðe� 1; dÞ are occupied. Thus, for s ¼ sð2; 2Þ only 18 of the 36 blocks are nonzero,
while for s ¼ sð20; 2Þ only 1071 of the 53,361 blocks are occupied.
Appendix C. Computing expectations

Note first the rules
oxhnðxÞ ¼
ffiffiffi
n
p

hn�1ðxÞ; ðC:1Þ
E½hnðxÞf ðxÞ� ¼ E½on

xf ðxÞ�=
ffiffiffiffi
n!
p

ðC:2Þ
when f satisfies certain smoothness and growth conditions (cf. [9,24,39]), and ox denotes the differentiation
operator.

The univariate triple product expectations X a
bc defined by Eq. (22) can therefore be found explicitly (by

Liebniz’ rule, for example): X a
bc vanishes unless t � ðaþ bþ cÞ=2 is an integer and satisfies t P maxða; b; cÞ,

in which case
X a
bc ¼

ffiffiffiffiffiffiffiffiffiffiffi
a!b!c!
p

ðt � aÞ!ðt � bÞ!ðt � cÞ! : ðC:3Þ
This also follows from an exact formula in Szego [72].
The coefficients of the expansion
expðcxÞ � R1n¼0/nhnðxÞ ðC:4Þ

formally satisfy
/n ¼ E½expðcxÞhnðxÞ� ¼ E½on
x expðcxÞ�=

ffiffiffiffi
n!
p
¼ cnE½expðcxÞ�=

ffiffiffiffi
n!
p
¼ cn expðc2=2Þ=

ffiffiffiffi
n!
p

ðC:5Þ

so
expðcxÞ � expðc2=2ÞR1n¼0cnhnðxÞ
ffiffiffiffi
n!
p

; ðC:6Þ

this may similarly be found from the Taylor series or from the exponential generating function for the ordin-
ary Hermite polynomials (cf. [51,65,72]). Thus
E½expðcxÞhaðxÞhbðxÞ� ¼ expðc2=2ÞR1n¼0cnX n
ab=

ffiffiffiffi
n!
p

: ðC:7Þ

A version of Eq. (C.7) can be found in [64].

Using Eq. (C.3), Eq. (C.7) becomes a finite expression
E½expðcxÞhaðxÞhbðxÞ� ¼ expðc2=2ÞR1n¼0cnX n
ab=

ffiffiffiffi
n!
p

¼ expðc2=2ÞRaþb
t¼maxða;bÞ

ffiffiffiffiffiffiffiffi
a!b!
p

ðaþ b� tÞ!ðt � aÞ!ðt � bÞ! c2t�a�b: ðC:8Þ
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The multivariate analog is
Gab � E½expðjþ RxjxxÞhahb� ¼ expðjÞPxE½expðjxxÞhaxðxÞhbxðxÞ�

¼ expðjþ r2=2Þ �PxRaxþbx
t¼maxðax;bxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ax!bx!
p

ðax þ bx � tÞ!ðt � axÞ!ðt � bxÞ!
j2t�ax�bx

x ; ðC:9Þ
where the powers kn
x are calculated pointwise and
r2ðxÞ ¼ cjðx; xÞ ¼ Rxk2
xðxÞ: ðC:10Þ
Expressions for the fields G�1
ab , defined by Eq. (13), can be obtained by replacing the components of j by those

of �j in expressions for the fields Gab.
Similarly, the various E½a� are known from the univariate recurrence
E½xn� ¼ E½xxn�1� ¼ E½oxn�1� ¼ ðn� 1ÞE½xn�2� ðC:11Þ

obtained with Eq. (C.1) [8]. Thus the basis-change coefficients defined by
b ¼ RaP abha;

hb ¼ RaQaba
ðC:12Þ
are also easily computable: P ab vanishes unless a � b with b=a a square, in which case
P ab � Px
bx!

ðbx � axÞ!
ffiffiffiffiffiffiffi
ax!
p E½xbx�ax � ðC:13Þ
while
Qab � P abPx
ð�1Þð3axþbxÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

ax!bx!
p : ðC:14Þ
Appendix D. Basic properties of Xa

D.1. The univariate case

We summarize the theory of the finite Jacobi matrices �X 1. The eigenvalues of �X 1 are the zeros z of hdþ1 with
associated eigenvectors
vz � ½h0ðzÞ; h1ðzÞ; h2ðzÞ; . . . ; hdðzÞ�T: ðD:1Þ

as can be shown, for example, by modifying an argument in [60]. By the Christoffel–Darboux formula, distinct
eigenvalues z; z0 produce orthogonal eigenvectors vz; vz0 , and the norms
kvzk2 ¼ 1=W z ðD:2Þ

provide the inverse weights for the HG quadrature with knots z [72]. Thus the orthogonal diagonalizing ma-
trix U for �X 1 has entries
Uaz � haðzÞCz ðD:3Þ

where z are the knots and
Cz ¼
ffiffiffiffiffiffi
W z

p
ðD:4Þ
the roots of the corresponding weights for the HG quadrature. The polynomials
pzðxÞ ¼ CzRaUazhaðxÞ ðD:5Þ

satisfy pzðz0Þ ¼ dzz0 and provide a polynomial interpolation scheme
f ðxÞ 	 Rzf ðzÞpzðxÞ: ðD:6Þ
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If the entries of �X c are approximately computed by the corresponding HG quadrature, matrices
~X c � ð~X c
abÞ ¼ ½Rz hcðzÞUazU bz� ðD:7Þ
result with ~X 1 ¼ �X 1, since the quadrature is exact to degree 2d þ 1 [6,68]; thus U diagonalizes ~X c, so
~X c ¼ hcð�X 1Þ and the eigenpairs are known from those of �X 1.

D.2. The multivariate case

For the multivariate case, define infinite matrices X a as tensor products
X a
bc � E½haðxÞhbðxÞhcðxÞ� ¼ PxX ax

bxcx
: ðD:8Þ
Given a rectangular truncation set, choose (as in (D.1) supra) a diagonalizing matrix Ux for each stochastic
dimension, and define
U s
ab � PxUx

axbx
: ðD:9Þ
The multivariate interpolation is formally identical to the univariate version given by (D.5).

D.3. Simultaneous diagonalizability of the �X x

D.3.1. Rectangular truncation

In the case of a rectangular truncation set, each �X x is a tensor product of some truncated univariate matrix
�X 1 with identity matrices, so the �X x are simultaneously diagonalizable. We show conversely that the truncated
matrices �X x can all be simultaneously diagonalized only for truncation sets s that are rectangular.

Since the �X x can be simultaneously diagonalized iff they commute, consider distinct variates x 6¼ x0 and
study the commutator. The matrices X x and X x0 commute, since
ðX xX x0 Þab ¼ RcE½xhahc�E½x0hchb� ¼ E½xhaRchcE½x0hchb�� ¼ E½xx0hahb� ¼ ðX x0X xÞab ðD:10Þ

Therefore, for a 2 s and b 2 s,
0 ¼ ½X x;X x0 �ab ¼ ½�X x; �X x0 �ab þ Rc 62sðX x
acX

x0

cb � X x0

acX x
cbÞ ðD:11Þ
or
½�X x; �X x0 �ab ¼ Rc 62sðX x0

acX x
cb � X x

acX
x0

cbÞ ðD:12Þ

A term X x0

acX x
cb (with a 2 s, b 2 s, and c 62 s) vanishes except when ax0 ¼ c ¼ bx; similarly, a term X x

ac0X
x0

c0b van-
ishes unless ax ¼ c0 ¼ bx0. If both ax0 ¼ bx and ax ¼ bx0, then
bx2 ¼ ax0x ¼ axx0 ¼ bx02
which is impossible since x 6¼ x0. The right side of Eq. (D.12) therefore contains at most one term, so the
matrices can commute only if the right side is empty.

It follows that the truncated matrices commute iff the following condition holds for every pair of distinct
variates x 6¼ x0 and every monomial l: whenever l, xl, and x0l all belong to s, so does xx0l.

This implies that a _ b, defined by ða _ bÞx � maxðax; bxÞ, belongs to s whenever a and b do: for suppose
that this is true whenever the total degree ja _ bj < n and consider a and b in s with ja _ bj ¼ n; there is noth-
ing to show if a ¼ a _ b or b ¼ a _ b, so we may assume there are variates x 6¼ x0 with ax > bx and ax0 < bx0 ;
by the induction hypothesis a=x _ b ¼ ða _ bÞ=x and a _ b=x0 ¼ ða _ bÞ=x0 both belong to s; since s is a trun-
cation set, ða _ bÞ=ðxx0Þ also belongs to s; hence, by the condition in the prior paragraph, so does a _ b.

Therefore s is rectangular: pick, for each variate x an element lðxÞ 2 s with largest possible x-degree and
set l ¼ lðx1Þ _ � � � _ lðxeÞ; then by the previous paragraph, l belongs to s; but then by construction, s con-
tains precisely the a � l and is therefore rectangular.

D.3.2. Generality of the argument

The preceding argument may generalize somewhat. Suppose, for example, given a finite collection of uncor-
related (but not necessarily independent) variates -. To avoid heavy tails and densities concentrated at a finite
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number of points, require 0 < E½pð-Þ2� <1 for all polynomials p. After shifting and rescaling, we may
assume each variate centered with unit variance. It is now possible to define an orthonormal family of mul-
tivariate polynomials pað-Þ indexed by leading terms a, and after introducing as before infinite matrices
X a � ðX a
bcÞ � ðE½papbpc�Þ ðD:13Þ
direct computation shows the infinite matrices X - commute. If the polynomials pað-Þ can be chosen satisfying
an ordinary three-term recurrence (as is the case for independent variates), then inspecting the above argu-
ments reveals that the truncations �X - commute when and only when the truncation is rectangular.

D.4. Remark on truncation and cubature

Here is a consequence of the foregoing remarks.
Suppose a truncation set s admits a cubature rule
E½f � 	 I ½f � � Rff ðfÞW f ðD:14Þ

satisfying the following conditions: (1) the number of knots f is the same as the number of monomials in s; (2)
I[1] = 1 and for every a and b in s and every x, I ½xhahb� ¼ X x

ab. Then s is rectangular.
To see this, observe first I ½hahb� ¼ dab for a and b in s. This is clear if either a or b is linear in any x or if

ha ¼ hb ¼ 1. Proceeding inductively, we may assume some x2 � a and apply the three-term relation of Eq. (27)
to write
I ½hahb� ¼ I ½xha=xhb�
ffiffiffiffiffi
ax
p þ I ½ha=x2 hb�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðax � 1Þ=ax

p
;

E½xha=xhb�=
ffiffiffiffiffi
ax
p þ E½ha=x2 hb�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðax � 1Þ=ax

p
¼ E½hahb�:

ðD:15Þ
Choosing Cf ¼ �
ffiffiffiffiffiffiffi
W f
p

and setting U af � haðfÞCf shows that
�X x ¼ ~X x ¼ Rf zxUazU bz ðD:16Þ

so the �X x are simultaneously diagonalizable and s is rectangular.

The hypothesis I ½1� ¼ 1 in condition (2) is equivalent in that context to the assertion that I ½hahb� ¼ dab for
all a and b in the truncation set s.

To generalize the calculations of Section 4.2, by providing a cubature rule that preserves the orthogonality
of the h-polynomials associated with a truncation set s and with number of knots the size of the truncation set,
one must therefore find a cubature that correctly computes ~X x

ab ¼ �X x
ab exactly except possibly when both

xa;xb fall outside of s. If it were possible to selectively damage these entries of the matrices �X x, so the dam-
aged matrices ~X x remained symmetric but commuted, then by simultaneously diagonalizing the ~X x, one
would obtain the knots and weights for a decoupling cubature; cf. [20]. But it is not clear how to accomplish
this. Additional complications are introduced if one seeks cubature rules involving more knots than polyno-
mials, producing nonrectangular U.

To our knowledge, such questions have not been considered, except in the case of the total degree
truncations.
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